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Abstract
The stability of the intermetallics Gd(Fe, T)12 and the site preferences of
the ternary 3d or 4d transition element T are investigated by using a series
of interatomic pair potentials, �Fe−Fe(r), �Fe−Gd(r), �Fe−T(r), �T−T(r),
�T−Gd(r), and �Gd−Gd(r), for the first time. The calculated results show
that adding either Cr, Mo, Ti, or V atoms makes the crystal cohesive energy
of Gd(Fe, T)12 decrease markedly, proving that these atoms can stabilize
Gd(Fe, T)12 with ThMn12 structure even though the GdFe12 crystal structure
is itself metastable. The calculated lattice parameters are in good agreement
with experiment. The amount of cohesive energy decrease is correlated with the
species and occupation site of the ternary atoms. The order of site preference of
these stabilizing elements T is 8i, 8j, and 8f, with 8i corresponding to the greatest
energy decrease. The calculated results further show that the addition of Co,
Cu, Ni, Sc, and Zn does not stabilize the GdFe12 phase in the ThMn12 structure.
The calculated results reported correspond well to available experimental data
indicating that the ab initio interatomic potentials can be used to describe rare-
earth materials.

1. Introduction

In 1981, Yang et al discovered the Y(Mn1−xFex)12 intermetallic compounds that have the
ThMn12 structure for a large range of iron content [1]. In 1987, de Mooij and others discovered
the Fe-rich compound RFe10V2 (R = Y, Ce, Nd, Sm, Gd) with the ThMn12 structure, and,
subsequently, other series of rare-earth compounds with this structure have been obtained [2,3].
These compounds have high Curie temperatures, and some of them have large magnetic
moments indicating that they may be valuable as permanent magnets. In fact, the binary
compounds RFe12 are metastable, but when a moderate amount of a ternary element T (T = Cr,
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Mo, Ti, V, or Si) is added, R(Fe, T)12 can be stable. The ternary element therefore obviously
plays a role in structural stabilization. The lattice cell of RFe12 is shown in figure 1 [2]. It
belongs to the space group I4/mmm, and consists of 26 atoms, or two RFe12 formula structures,
with four distinct kinds of site. Rare-earth atoms occupy 2a sites, and Fe atoms occupy the
8i, 8j, and 8f sites. According to x-ray diffraction analysis, most stabilizing elements, T, such
as V, Mo, or Cr, preferentially substitute for the Fe atom at i sites [4, 6–10]. For example, Cr,
Mo, and V preferentially occupy 8i sites, and Ti preferentially occupies 8i + 8j sites.

Figure 1. The lattice cell of GdFe12. The y-axis is vertical, and the z-axis is horizontal, pointing
to the right. The origin is located at the south-west corner.

In this paper, a series of interatomic pair potentials in Gd(Fe, T)12 are determined by
using a general lattice-inversion technique and a first-principles-based crystal cohesive energy
calculation. In this way, the stability of Gd(Fe, T)12, and the T-site preferential occupation
are evaluated and analysed. The calculated results are in good agreement with existing
experimental results for all 3d additions, and the results with 4d additions for GdFe12−xTx

are calculated as predictions for future experimental work. Section 2 gives an introduction
to the methodology for the calculation. Section 3 shows the calculated results and gives a
comparison to experiment. Section 4 gives an intuitive explanation of the calculated results
based on the picture of interatomic potentials. The conclusions and a discussion are given in
section 5.

2. Methodology

The technique used for obtaining the ab initio pair potential was initially proposed by Carlsson
et al [11]. However, the expression for their solution includes infinite summations, each of
which includes infinite terms, making it inconvenient for analysis.

2.1. Chen’s lattice-inversion technique

The most naive model for solid cohesion expresses the total cohesive energy per atom of a
solid, E, in terms of the sum of interatomic pair potentials, �(Ri). The latter depends only
upon the distance ri between a representative atom at the origin and another atom i. If the
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energy is known as a function of volume, or equivalently the nearest-neighbour distance, x,
then the inverse problem is that of inverting the pair potential, �(x), in terms of E(x) on the
basis of the following expression [12–17]:

E(x) = 1

2

∑
Ri �=0

�(Ri) = 1

2

∞∑
n=1

r0(n)�(b0(n)x) (1)

where x is the nearest-neighbour distance, Ri is the position vector of the ith atom, b0(n)x is
the nth-neighbour distance, and r0(n) is the nth coordination number. We extend the series,
{b0(n)}, into a multiplicative semi-group such that, for any two integers m and n, there always
exists an integer k such that

b(k) = b(m)b(n). (2)

Equation (1) can then be rewritten as

E(x) = 1

2

∞∑
n=1

r(n)�(b(n)x) (3)

where

r(n) =
{

r0(b
−1
0 [b(n)]) if b(n) ∈ {b0(n)}

0 if b(n) �∈ {b0(n)}. (4)

Thus the pair potential, �(x), can be written as

�(x) = 2
∞∑

n=1

I (n)E(b(n)x) (5)

where I (n), the inversion coefficient, can be uniquely determined from the crystal structure as∑
b(n)|b(k)

I (n)r

(
b−1

[
b(k)

b(n)

])
= δk1. (6)

Note that this inversion coefficient I (n) is only structure dependent; thus repeated calculation
is not needed for different materials belonging to the same crystallographic structure group.

2.2. The first-principles calculation

In this work, the whole process is carried out within a first-principles framework, increasing
the reliability of the results, and is especially favourable for study of series. To reduce the time
requirement, the calculations of E(x) are performed on the basis of an ab initio augmented-
spherical-wave method [19–22] within the local density functional theory, even though other
ab initio methods, such as the norm-conserving pseudopotential technique, may provide better
results in some cases. The cohesive energy is obtained from

E(x) = Etot (x) − Etot (∞). (7)

A series of functions E(x) are calculated with various lattice constants at equal intervals of
0.1 Å. In each case, for generating the total energy, more than 80 k-points in an irreducible
Brillouin zone are taken into account in a self-consistent calculation. The data are then fitted
on the basis of Rose functions [23]. This is quite an standard procedure in calculations using
an Origin 2000 machine, and ESOCS code from MSI (Materials Simulation Incorporation).

To give an intuitive impression, some of the calculated interatomic potentials are shown
in figure 2.
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Figure 2. Some important interatomic potentials.

3. The calculation procedure and results

In this paper, the structure and cohesive energy of a periodic supercell with 208 atoms, or
RFe12−xTx undergoing relaxation, are studied on the basis of calculated interatomic potentials.
Energy minimization, rather than molecular dynamics simulation, is carried out using the
conjugate-gradient method with MSI software with the cut-off distance of 14 Å. The energy
values for (RFe12−xTx)16 in figure 3 are the results of taking the arithmetic average for 20
stochastic samples produced by random substitution of ternary additions for Fe. The error
bars in the figure represent the ranges of the root mean square errors.
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Figure 3. The effect of ternary elements on the phase stability and site preference for unrelaxed
cases (a) and for relaxed cases (b).

3.1. Calculation of the structure parameters

3.1.1. The intrinsic structure. The virtual binary structure GdFe12 can be considered as the
intrinsic structure of the pseudo-binary compounds Gd(Fe, T)12, even though it is metastable.
In the calculation, the initial lattice parameters of GdFe12 are set arbitrarily (see table 1),
and the conjugate-gradient method is used to minimize the system energy on the basis of
the calculated interatomic potentials. This is essentially a quasi-static process of dynamic
relaxation evolution. The result indicates that the final stabilized structure is tetragonal with

Table 1. Determination of lattices parameters of GdFe12.

Initial (unrelaxed) Final (relaxed)

a, b, c (Å) α, β, γ (deg) a, b, c (Å) α, β, γ (deg)

8.496, 8.496, 4.76 90, 90, 90 8.428, 8.428, 4.798 90, 90, 90
2, 2.5, 3 92, 88, 90 8.428, 8.428, 4.798 90, 90, 90
12, 12, 12 90, 90, 90 8.428, 8.428, 4.798 90, 90, 90
2, 2, 2 70, 70, 70 8.428, 8.428, 4.798 90, 90, 90
10, 10, 10 88, 88, 88 8.428, 8.428, 4.798 90, 90, 90
8, 8, 5 60, 60, 60 8.428, 8.428, 4.798 90, 90, 90
16, 16, 10 90, 90, 90 8.428, 8.428, 4.798 90, 90, 90
1, 1, 1 90, 90, 90 8.428, 8.428, 4.798 90, 90, 90
1, 1, 1 88, 88, 88 6.6, 7.78, 6.96 85.7, 94.3, 94.30
1, 4, 1 60, 70, 70 6.765, 8.184, 6.355 84.5, 87.9, 84
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space group I4/mmm. The atom site occupations agree with the ThMn12 structure, and the
lattice constants are stabilized at a = 8.428 Å and c = 4.798 Å provided that both the
symmetry and the size of the lattice constants of the initial model are very close to the values
known for Gd(Fe, T)12 (table 1). The calculated lattice constants of GdFe12 are close to the
experimental values for Gd(Fe, T)12 intermetallics [4–6], demonstrating that the structure of
GdFe12, though metastable, is close to that of a stable phase.

3.1.2. The ternary systems. The dependence of the lattice constants on the content of ternary
addition is illustrated in figure 4, showing the slow variation of the lattice constants as the
content of the ternary additions increases for the 8i-site substitution. Table 2 shows that the
calculated results are in good agreement with experiment, with an average deviation less than
0.33%, the largest being 0.93%.
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Figure 4. The dependences of the lattice constants on the content of ternary additions.

Table 2. The comparison between calculated and experimental lattice parameters [24] (in Å).

Calculated a (Å) Experimental a (Å) Calculated c (Å) Experimental c (Å)

GdFe12 8.423 — 4.801 —
GdFe10Cr2 8.504 8.515 4.77 4.766
GdFe10V2 8.54 8.517 4.796 4.774
GdFe11Ti 8.518 8.548 4.81 4.806
GdFe10Mo2 8.66 8.58 4.82 4.805
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3.2. The site preference and phase stability

3.2.1. Phase stability for Gd(Fe, T)12. From figure 3, it can be seen that an increase in T
content causes the crystal cohesive energy of Gd(Fe, T)12 to decrease, demonstrating that the
addition of these atoms truly stabilizes the structure of GdFe12, enabling the Gd(Fe, T)12 stable
phase to exist. The introduction of Mo and V reduces the GdFe12 lattice cohesive energy more
significantly than Cr and Ti, indicating that Mo or V will have a higher solubility [4–6]. On
the other hand, the calculated results of substitution for Ni, Cu, Co, Sc, Zn, etc increase the
system energy. It is therefore inferred that these elements will not stabilize the GdFe12 lattice.

3.2.2. Site preference of T = Cr , Mo, Ti, V. It can be seen from figure 3 that as the T atom
occupies the 8i site, the calculated cohesive energy of GdFe12 decreases most significantly; for
the 8j site, the energy decreases less, and for the 8f site, the cohesive energies are comparatively
high. Thus it is obvious that the T atom will preferentially occupy the 8i site, which is very
much consistent with experimental results [4–9]. Some experiments have reported that Ti
atoms, in addition to preferentially occupying the 8i site, also attempt to occupy the 8j site.
However, the calculated results indicate that the cohesive energy difference between states of
Ti occupying the 8i and the 8j sites cannot be ignored. In this calculation, there is no evident
trend for the Ti atom to occupy the 8i site and the 8j site simultaneously.

The energy dependence curve as a function of the ternary addition of Mn is convex, in
contrast to the concave form seen in other cases. By inference, the structure of GdFe12−xMnx

becomes more and more stable as x increases, so the very stable phase GdMn12 would be
expected to appear according to this calculation (figure 5). This indicates that the RMn12

structure is much more stable than the RFe12 structure. This is to some extent consistent with
the actual situation [25, 26].
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Figure 5. The cohesive energy curve of GdFe12−xMnx .

As regards the site preference and phase stability, a comparison of the calculated results
with experiment can be seen in table 3. From table 3, we can see that the evaluated phase
stability and site preference are in good agreement with experiment.

4. An intuitive analysis

4.1. Phase stability

‘Intuitive’ is in some senses the opposite of ‘rigorous’; it tells us what kind of visual image
we might have, without a complete calculation. Let us first analyse the effect of the ternary
element on the structural stability of Gd(Fe, T)12. When small ternary additions are involved,
the atoms surrounding each ternary atom are mostly Fe atoms. The Gd atom is not nearest
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Table 3. The effect of the ternary element on the phase stability and site preference. The notation
⇓ and ⇑ indicates the energy decrease and increase caused by ternary additions.

T Calculated energy Phase stability (experimental) Site preference (calculated) Site preference (experimental)

Ti ⇓ Yes 8i 8i
V ⇓ Yes 8i 8i
Cr ⇓ Yes 8i 8i
Mo ⇓ Yes 8i 8i
Mn ⇓ Yes 8i 8i
Cu ⇑ No — —
Ni ⇑ No — —
Zn ⇑ No — —
Ag ⇑ No — —
Nb ⇓ Yes 8i 8i

neighbour to an atom of its own species, and the occasions on which T atoms are nearest
neighbours are truly rare. Therefore, the energy difference between structures before and after
substitution is dominated by the difference between �Fe−Fe(x) and �Fe−T(x), and the role of
�Gd−Gd(x) and �T−T(x) can be ignored. The element T can stabilize the R(Fe, T)12 structure
if �Fe−Fe(x) > �Fe−T(x), but cannot play a role in the stability for �Fe−Fe(x) < �Fe−T(x).
This can explain why elements belonging to the family of V, Ti, Cr, Mn, Nb, Mo, . . . stabilize
the structure while the elements Ni, Co, Zn, Sc do not.

When large amounts of ternary elements are added, each ternary T atom has a greater
chance of being close to rare-earth elements and other T atoms. In this case, the comparisons
between �Gd−Fe(x) and �Gd−T(x), and between �Fe−Fe(x) and �T−T(x), become important.
According to our calculation, we find that if �Gd−Fe(x) < �Gd−T(x) and �Fe−Fe(x) <

�T−T(x) over the range 2.4 Å–4.4 Å, both cases will see a decrease in substitution. Therefore,
the stability range for the single phase cannot be extended without limit, or the solubility range
is the limit. In the case of Mn as the ternary element, we have �Gd−Fe(x) > �Gd−T(x), and
�Mn−Mn(x) < �Fe−Fe(x) over the whole extent of the interatomic distance. This might be why
the dependence curve of the total energy of Gd(Fe12−xTx) on the content of ternary additions
becomes convex and why GdMn12 is more stable than GdFe12. The above is an intuitive
analysis of why some elements can play a role in stabilizing the GdFe12 structure, and others
cannot. Of course, the real calculation is related to six interatomic potentials �Gd−Gd, �Fe−Fe,
�T−T, �Gd−T, �Gd−Fe, and �T−Fe simultaneously, in a complex relaxation process. It is noted
that the important range of interatomic distances for the above discussion is between 2.3 and
4.4 Å (table 4). Also, in this paper, only an energy-minimization process is considered, which
is essentially a static method, rather than a molecular dynamics process.

4.2. Site preference

The site preference of a stabilizing atom can be explained simply by carrying out a cluster
analysis of the surroundings of the sites 8i, 8j, or 8f in the crystal GdFe12 based on a comparison
of the interatomic potential curves. As discussed above, all of the interatomic distances are
larger than 2.3 Å, and the potential values are most important when the distance is less than
4.4 Å. Therefore, the radius of the cluster is taken as 4.4 Å. It is noted that each �Fe−T(x)

curve (T = Cr, Ti, V, Mo, Ni, Tc, and Zr) intersects the �Fe−Fe(x) curve at somewhere around
2.7 Å (figure 2). For interatomic distances x < 2.7 Å, �Fe−Fe(x) < �Fe−T(x), and for this
reason the T atom is not substituted for Fe; for x > 2.7 Å, �Fe−Fe(x) > �Fe−Fe(x), leading
to T being preferentially substituted for Fe. On the other hand, each of the curves �Gd−T(x)
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intersects �Gd−Fe(x) at approximately 3.4 Å. We are interested in the case of x < 3.4 Å, where
�Gd−T(x) > �Gd−Fe(x), and it is of no benefit to substitute T for Fe.

On the basis of the potential analysis, the order of preference for substituting T for Fe
can be qualitatively estimated by considering the benefit factors as related in table 4, without
considering the weight difference.

Table 4. Preference factors for distinct sites for Fe atoms.

Site No of Fe (<2.7 Å) No of Fe (2.7–4.4 Å) No of Gd Benefit factor

8i 7 24 1 −7 + 24 − 1 = 16
8j 10 19 2 −10 + 19 − 2 = 7
8f 11 16 2 −11 + 16 − 2 = 3

In table 4, the first column represents the number of Fe atoms inside a sphere of radius
2.7 Å, the second column represents the number inside the shell within r1 = 2.7 Å and
r2 = 4.4 Å, and the third column corresponds to the centre atom being Gd. We can see that
the site preference order for these stabilizing elements in 3d or 4d families is, in most cases,
8i, 8j, 8f. This approximate estimate is in good agreement with experiment. For example, in
a Gd(Fe, V)12 lattice cell, the distances between Gd atoms and 8i, 8j, and 8f sites are within
the range of 2.9–3.3 Å. In this range, the interatomic interaction of �V−Gd is much stronger
than that of �Fe−Gd. Thus V occupying the 8i site is most beneficial in terms of energy min-
imization, reflected by the site preference substitution behaviour of V. For Gd(Fe, Cr)12, the
difference in interatomic pair potential between �Gd−Cr and �Fe−Gd is not significant, so the
trend of Cr-site preferential occupation is not evident.

5. Conclusions and discussion

In the present work, the phase stability, site preference, and lattice constants for a series of
complex compounds, Gd(Fe, T)12, are calculated by using inverted pair potentials based on
simple binary systems: Gd–Gd, Fe–Fe, and Gd–T. This implies the applicability of ab initio
potentials to rare earths. However, it has to be noted that the ab initio cohesive energy curve
for the 3d elements is somewhat deeper than that obtained from experiment, and should be
improved in a future study.
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